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Recommender systems fight information overload by selecting automatically items that
match the personal preferences of each user. The so-called content-based recommenders
suggest items similar to those the user liked in the past, using syntactic matching mecha-
nisms. The rigid nature of such mechanisms leads to recommending only items that bear
strong resemblance to those the user already knows. Traditional collaborative approaches
face up to overspecialization by considering the preferences of other users, which causes
other severe limitations. In this paper, we avoid the intrinsic pitfalls of collaborative solu-
tions and diversify the recommendations by reasoning about the semantics of the user’s
preferences. Specifically, we present a novel content-based recommendation strategy that
resorts to semantic reasoning mechanisms adopted in the Semantic Web, such as Spread-
ing Activation techniques and semantic associations. We have adopted these mechanisms
to fulfill the personalization requirements of recommender systems, enabling to discover
extra knowledge about the user’s preferences and leading to more accurate and diverse
suggestions. Our approach is generic enough to be used in a wide variety of domains
and recommender systems. The proposal has been preliminary evaluated by statistics-
driven tests involving real users in the recommendation of Digital TV contents. The results
reveal the users’ satisfaction regarding the accuracy and diversity of the reasoning-driven
content-based recommendations.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Recommender systems provide personalized advice to users about items they might be interested in. These tools are
already helping people efficiently manage content overload and reduce complexity when searching for relevant information.
To fulfill these personalization needs, three main components are required: (i) a database that stores characterizations of the
available items, (ii) profiles that model the users’ preferences, and (iii) recommendation strategies that make personalized
suggestions to each individual.

The first recommendation strategy was content-based filtering [41,30], which consists of suggesting items similar to those
the user liked in the past. In spite of its accuracy, this technique is limited due to the similarity metrics employed, which are
based on rigid syntactic approaches that can only detect similarity between items that share all or some of their attributes
[1]. Consequently, traditional content-based approaches lead to overspecialized suggestions including only items that bear
strong resemblance to those the user already knows (i.e. items bound to the attributes defined in his/her profile).
. All rights reserved.
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In order to fight overspecialization, researchers devised collaborative filtering [36,25,29] – whose basic idea is to move be-
yond the experience of an individual user’s profile and instead draw on the experiences of a community of like-minded users
(his/her neighbors), and even they combined content-based and collaborative filtering in hybrid approaches [6,22,33,13,40].
Even though collaborative (and hybrid) approaches mitigate the effects of overspecialization by considering the interests of
other users, they bring in new limitations, such as the sparsity problem (related to difficulties to select each individual’s
neighborhood when the knowledge about the users’ preferences is sparse), privacy concerns bound to the confidentiality
of the users’ personal data, and scalability problems stemmed from the management of many user profiles (instead of just
one profile like in content-based approaches).

The contribution of our paper is a content-based strategy that diversifies the recommendations by exploiting semantic rea-
soning about the user’s interests, instead of considering other individuals’ preferences. This way, we overcome the overspe-
cialization effects without suffering from the intrinsic limitations of collaborative and hybrid solutions. Specifically, our
reasoning mechanisms have been borrowed from the area of the Semantic Web, an initiative that is based on (i) annotating
Web resources by semantic annotations (metadata), (ii) formalizing this knowledge in a domain ontology that represents
concepts and relationships by classes and properties, respectively, and (iii) carrying out reasoning processes about the ontol-
ogy in order to infer semantic relationships among the annotated resources.

Broadly speaking, our content-based strategy suggests items which are semantically related to the user’s preferences, in-
stead of offering items with the same attributes that appear in his/her profile. For example, in the TV field, a viewer who has
enjoyed documentaries about traveling and archeology might receive as recommendations programs about potholing (a hob-
by strongly related to the study of ancient graves) or about Greece (a country of deep-rooted archeological tradition). Our
domain-independent strategy consists of two stages that adopt semantic associations [4] and Spreading Activation techniques
(henceforth, SA techniques) [14] as reasoning mechanisms:

(1) Firstly, the pre-filtering phase selects an excerpt from the domain ontology that comprises only instances of classes
and properties that are significant for the user (because they are closely related to his/her preferences). For that rea-
son, this excerpt is named the user’s Ontology of Interest. Then, we infer hidden semantic associations among the
items included in the user’s Ontology of Interest, starting from the hierarchical relationships and properties formal-
ized in it.

(2) Next, the recommendation phase processes the discovered knowledge and provides the personalized recommenda-
tions. To this aim, we emphasize the use of SA techniques as computational mechanisms able to explore efficiently a
generic network with nodes interconnected by links, and to detect concepts that are strongly related to each other. In
our approach, the considered network corresponds to the user’s Ontology of Interest, while the strongly related nodes
are his/her preferences and the items to be suggested.

The filtering criteria employed to delimit the user’s Ontology of Interest have been described in detail in [9]. For that rea-
son, here we focus on the second phase of our strategy. Specifically, our main research contribution consists of extending
traditional SA techniques so that the personalization requirements of a recommender system can be considered. To this
aim, our improved SA techniques must fulfill the following requirements:

� Firstly, our SA mechanisms must enable our strategy to discover useful knowledge for the recommendation process by
reasoning about the semantics of the user’s Ontology of Interest.
� Secondly, the knowledge inferred by the SA mechanisms must serve to increase the diversity of the offered content-based

recommendations.
� Lastly, our SA approach must learn automatically the user’s preferences from the feedback provided after recommenda-

tions, and thereafter update conveniently his/her personal profile. This way, our reasoning-based suggestions evolve as
the user’s preferences change over time, thus reinforcing his/her confidence in our personalization strategy.

This paper is organized as follows. The next two sections provide necessary background to understand our approach: Sec-
tion 2 explains internals of semantic associations and highlights the limitations of traditional SA techniques for personali-
zation purposes, while Section 3 presents the two essential components of our reasoning framework: the domain
ontology and the user profiles. Next, Section 4 details the internals of our two-phase recommendation strategy, exploring
synergies between our improved SA techniques and content-based filtering in the selection of diverse recommendations.
Afterwards, Section 5 provides an example of our strategy in the scope of Digital TV, where we highlight how to exploit
our reasoning capabilities to select TV programs among the myriad available in the digital stream. Next, Section 6 presents
the experimental evaluation of our approach and discusses scalability and computational feasibility concerns. Finally, Sec-
tion 7 summarizes the conclusions from our work and motivates possible lines of further research.
2. Background on semantic reasoning

In this section, we describe the internals of the semantic reasoning mechanisms exploited in our recommendation strat-
egy: semantic associations and SA techniques. Very briefly, the associations allow to interrelate the items available in the
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recommender system, whereas the SA techniques serve to discover new knowledge about the users’ preferences from the
inferred associations and the concepts formalized in the domain ontology.
2.1. Semantic associations

The semantic associations employed in our reasoning approach have been borrowed from [4], where Anyanwu and Sheth
defined the relationships that can be established between two specific class instances in an ontology. In order to categorize
these associations, they resorted to a structure named property sequence, which consists of a set of class instances linked to
each other by means of properties. The first class instance defined in the sequence is the origin, the last one is the terminus,
and the length of the sequence is the number of properties included in it. The semantic associations defined in [4] are defined
next with the aid of Fig. 1:

� q-path association. Two class instances i1 and i5 are q-pathAssociated in an ontology if it is possible to find a property
sequence whose origin is i1 and whose terminus is i5 (or vice versa). Obviously, the longer the property sequence linking
both class instances, the less significant the relationship between them, due to the presence of many intermediate nodes.
� q-join association. Two class instances are q-joinAssociated if both are origins (e.g. i1 and i6 in Fig. 1) or terminus (i5 and i8)

of two property sequences containing instances belonging to a common class C (named the union class).

2.2. Spreading Activation techniques

SA techniques are computational mechanisms able to efficiently explore huge generic networks of nodes interconnected
by links. According to the guidelines established in [14], these techniques work as follows:

� Each node is associated to a weight (called the activation level) that grows with its relevance in the network: the more
relevant the node, the higher its activation level. Besides, each link joining two nodes has a weight whose value is propor-
tional to the strength of the relationship existing between both nodes.
� Initially, a set of nodes are selected and the nodes connected with them by links (named neighbor nodes) are activated. In

this process, the activation levels of the initially selected nodes are spread until reaching their neighbors in the network.
� The activation level of a reached node is typically computed by considering the levels of its neighbors and the weights

assigned to the links that join them to each other. Consequently, the more relevant the neighbors of a given node (i.e.
the higher their activation levels) and the stronger the relationship between the node and its neighbors (i.e. the higher
the weights of the links between them), the more relevant the node will be in the network.
� The spreading process is repeated until reaching all the nodes of the network. In the end, the highest activation levels

correspond to the nodes that are most closely related to the initially selected ones.

Since the spreading process permits to reach nodes that are not directly joined to the initially selected ones, SA techniques
carry out inference processes where new knowledge is learned. To harness these inferential capabilities, several algorithms
have been proposed for exploration and extraction of the most significant concepts formalized in a knowledge network. In
i6 i8
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Fig. 1. Semantic associations adopted in our reasoning-driven approach.
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literature, many applications resort to the so-called Hopfield Net algorithm due to its beneficial properties of search and
knowledge discovery, as explained in [23].

2.2.1. The Hopfield Net algorithm
The Hopfield Net algorithm is based on a neural network that provides two capabilities especially relevant for the spread-

ing process: parallel search and convergence (see [12] for details). On the one hand, the search capabilities allow the algo-
rithm to activate in each iteration all the nodes of the network in parallel, computing their activation levels according to the
levels of the remaining nodes in the network. On the other, the algorithm Hopfield Net traverses successively the nodes (iter-
ation by iteration) until their activation levels converge to a stable value. The internals are as follows:

� Firstly, a value 1 is assigned as the activation level for the initially activated nodes, and a value 0 is established for the
remaining nodes of the network.
� Next, the initial activation levels are spread through the network, and the levels corresponding to all the nodes are com-

puted by using the sigmoid function (fS included in Eq. (1)):
Ajðt þ 1Þ ¼ fS

Xn�1

i¼0

AiðtÞ �wij

 !
; 0 6 j 6 n� 1 ð1Þ
In this expression:
– Aj(t + 1) is the activation level of the node j in iteration t + 1,
– Ai(t) is the activation level of the node i in iteration t,
– n is the number of nodes in the network,
– wij is the weight of the link between the nodes i and j, being wij = 0 if there does not exist a link between them in the

network,
– fSðxÞ ¼ 1

1þexp
h1�x
h2

h i, where h1 is a configurable threshold, and h2 is a parameter used to modify the shape of the sigmoid

function fS(x).
� The spreading process is repeated until the activation level of all the nodes reach a stable value, as indicated by Eq. (2),
where n is a configurable parameter taking very low values
Xn�1

j¼0

jAjðt þ 1Þ � AjðtÞj 6 n ð2Þ
2.2.2. Limitations of traditional SA techniques in personalization field
We have identified two severe drawbacks that prevent us from exploiting the inferential capabilities of traditional SA

techniques in our reasoning-driven recommendation strategy. These drawbacks lie within (i) the kind of links modeled in
the considered network and (ii) the weighting processes of those links.

� On the one hand, the kind of the modeled links is closely related to the richness of the reasoning processes carried out
during the spreading process. These links establish paths to propagate the relevance of the initially activated nodes to
other nodes closely related to them. For that reason, it is possible that some significant nodes never be detected, due
to the absence of links reaching them in the network. Existing SA techniques (see examples in [32,35,23,37]) model very
simple relationships, which lead to poor inferences and prevent from discovering the knowledge hidden behind more
complex associations.
� The second limitation of traditional SA approaches is related to the weighting processes of the links modeled in the net-

work. According to the guidelines described in Section 2.2, these weights remain invariable over time, because their val-
ues depend either on the existence of a relationship between the two linked nodes or on the strength of this relationship.
This static weighting process is not appropriate for our personalization process, where it is necessary that the weights
assigned to the links of the user’s network enable to: (i) learn automatically his/her preferences from the feedback pro-
vided after recommendations and (ii) adapt dynamically the spread-based inference process as these preferences evolve.

In Section 4, we will explain how our reasoning-driven approach fights above limitations by extending traditional SA
techniques so that they can be adopted in a content-based recommender system. Prior to that, the next section describes
the procedures we have followed to formalize the domain ontology and to model the user profiles.

3. Background on our reasoning-driven personalization framework

3.1. The domain ontology

In the field of the Semantic Web, an ontology characterizes the concepts typical in a domain and their relationships by
means of classes and properties, respectively, which are organized hierarchically [8]. Besides, the ontology is populated
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by including specific instances of classes and properties. In the context of a recommender system, class instances represent
the available items and their attributes, whereas property instances link items and attributes to each other. We depict in
Fig. 2 a brief excerpt from an ontology for the TV domain, defined from the TV-Anytime specification (a collection of meta-
data providing detailed descriptions about generic audiovisual contents [38]). In this figure, it is possible to identify several
class instances referred to specific TV programs, which belong to a hierarchy of genres (e.g. Fiction, Sports, Music, Leisure). The
attributes of these TV contents (e.g. cast, intented audience, topics) are also identified by hierarchically-organized classes,
and related to each program by means of labeled properties (e.g. hasActor, hasIntendedAudience, isAbout).

Ontologies have become the cornerstone of the Semantic Web due to two reasons. On the one hand, formal conceptual-
izations enable inference processes to discover new knowledge from the represented information. On the other, ontologies
facilitate automated knowledge sharing, by allowing easy reuse between users and software agents. This feature facilitates
the development of ontologies, which would be a tedious task otherwise. Nowadays, there exist repositories containing mul-
tiple and very diverse ontologies (e.g. SchemaWeb1), as well as numerous management tools providing useful functionalities
for development tasks (e.g. merging of multiple ontologies, consistency checking, discovery of equivalent classes, reuse of con-
cept descriptions, automatic categorization of instances in the appropriate classes via logics-based reasoners [3,17], etc.). In
sum, by reusing the concepts and relationships formalized in publicly available ontologies and resorting to the existing man-
agement tools, it is possible to create a domain ontology for reasoning-purposes with acceptable effort.

There exist several standard implementation languages for ontology development. The first proposals were RDF [7] and
RDFS [10], which added a formal semantics to the purely syntactic specifications provided in XML. Next, DAML [15] and OIL
[18] arose, which have been finally fused and standardized by W3C as OWL [26], the most expressive language nowadays
including three sub-levels (Lite, DL and Full). The language to use in the application of our reasoning-driven approach de-
pends on the knowledge and expressiveness necessities of the domain considered and the recommender system.
1 Available in http://www.schemaweb.info/schema/BrowseSchema.aspx.

http://www.schemaweb.info/schema/BrowseSchema.aspx
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3.2. User modeling technique

Reasoning about a user’s preferences requires a formal representation including semantic descriptions of the items that
are appealing or unappealing to him/her (named positive and negative preferences, respectively). These descriptions permit a
recommender system to learn new knowledge about the user’s interests, which is not possible with many of the existing user
modeling techniques:

� Some existing works define too simple user models, containing only flat lists of key words (e.g. attributes) or ratings
referred to each item defined in the user’s profile [11,24,39]. These proposals provide little knowledge about the user’s
preferences, and therefore hamper the application of advanced reasoning processes.
� Other more sophisticated proposals take advantage of the hierarchical structures defined in an ontology to model the

user’s preferences [27,42,19]. In these works, profiles do not contain the specific items the user (dis)liked in the past,
but the classes under which these items are categorized in a hierarchy. The main drawback of this approach is that it only
explores the hierarchical structure of the domain and misses the semantic descriptions of the items, which are especially
useful for user modeling tasks and for subsequent reasoning processes, as we will describe through the paper.

Bearing in mind that the descriptions required in our reasoning mechanisms are already defined in the domain ontology, we
propose to model the user’s preferences by reusing the knowledge formalized in it. The resulting models are named ontology-
profiles and store the interest of the user in: (i) the attributes of the items which are (un)interesting for him/her and (ii) the hier-
archy of classes under which these items are categorized. This approach has two main advantages for a recommender system:

� On the one hand, the formal representation of the user’s profile allows the system to reason and compare effectively his/
her preferences against the available items, thus favoring more accurate personalization processes.
� On the other hand, we provide the system with a very detailed model of the user’s interests, while not requiring that the

classes, properties and instances that identify these preferences be stored in each profile. Thus, we significantly reduce
the storage capabilities needed in the reasoning-driven recommender system. To this aim, we use the domain ontology
as a common knowledge repository, keeping only two elements in the user’s profile: unique references (denoted by IDs)
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Fig. 3. Our ontology-based approach for modeling user in a TV recommender system.
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that identify the items the user (dis)liked, and his/her specific level of interest in each one of them. These references per-
mit to locate in the ontology the items defined in the user’s profile and to query their semantic descriptions (i.e. attributes
and hierarchical classes) over the conceptualization, as shown in Fig. 3 for a recommender system in TV domain.

Note that our modeling technique does not consider a flat list of attributes referred to the user’s preferences, but rather it
exploits the structure of the domain ontology and the relationships existing among these attributes in order to learn knowl-
edge about his/her interests and exploit it during the personalization process.

Obviously, recommender systems require the users to define some initial preferences to start working. Considering the
users’ involvement, the goal is to provide a user-friendly interface to alleviate their initialization burden. Our user modeling
technique exploits the hierarchical structure of the underlying ontology for that purpose. Specifically, a list of classes/sub-
classes and specific instances referred to the items to be recommended (e.g. programs in the TV domain) is shown to the
user, who can identify his/her positive and negative preferences by assigning ratings to each specific item. The hierarchy
of classes displayed is self-explanatory (see bottom of Fig. 3), so that the users can easily browse it and feel free to rate
as items as they want.

After the profile initialization, it is necessary to measure the user’s level of interest in each item included in his/her profile.
To this aim, we have defined the so-called DOI indexes (Degree Of Interest) in the range [�1,1], with �1 representing the
greatest disliking and 1 the greatest liking. These indexes can be either explicitly entered by the user or inferred automat-
ically by the recommender system from the relevance feedback provided after recommendations. The DOI index computed
for each item is also used to set the ratings corresponding to its attributes and to the classes under which the item is cate-
gorized in the ontology. Specifically, the DOI of an attribute is taken as the average of the DOIs of the items it is linked to.
Similarly, the DOIs of the most specific classes are computed as the average of the DOIs of the items classified under them.
Then, we propagate these values upwards in the hierarchy until reaching its root class. For that purpose, we adopt the ap-
proach proposed in [42], which leads to higher DOI indexes for the superclasses closer to the leaf class whose value is being
propagated, and lower ones for the classes which are closer to the root of the hierarchy. Besides, the higher the DOI of a given
class and the lower its number of siblings, the higher the value propagated to its superclass.
4. Using content-based filtering in tandem with SA techniques

As we mentioned in the introduction, our content-based strategy is divided into two phases named pre-filtering and rec-
ommendation phase. Even though the pre-filtering phase has been detailed in [9], in this section we summarize the main as-
pects of this process with the goal of clarifying how the user’s Ontology of Interest is selected (Section 4.1) and how it is
processed by SA techniques in the recommendation phase of the strategy (Sections 4.2, 4.3, 4.4). Regarding SA techniques,
we extend traditional approaches by overcoming the limitations pointed out in Section 2.2.2, which hamper their adoption
in a recommender system where the focus must be put on the user’s preferences:

� On the one hand, our approach extends the simple relationships considered by traditional SA techniques by considering
both the properties defined in the ontology and the semantic associations inferred from them. This rich variety of rela-
tionships permit to establish links that propagate the relevance of the items selected by the pre-filtering phase, leading
to diverse enhanced recommendations.
� On the other hand, to fulfill the personalization requirements of a recommender system, our link weighting process does

not depend only on the two nodes joined by the considered link, but also on (the strength of) their relationship to the
items defined in the user’s profile. This way, the links of the network created for the user are updated as our strategy
learns new knowledge about his/her preferences, thus leading to tailor-made recommendations after the spreading
process.

Once the principles of our SA approach have been sketched, we focus on the processes required for its use in our content-
based strategy: (i) selection of the user’s Ontology of Interest, (ii) creation of the user’s SA network, (ii) weighting of its links,
(iii) processing of the network by SA techniques, and (iv) selection of our reasoning-based recommendations.

4.1. Pre-filtering phase: creating the user’s Ontology of Interest

Our pre-filtering phase decides which instances of classes and properties from the domain ontology must be included in
the user’s Ontology of Interest because they are relevant for him/her. For that purpose, we firstly locate in the domain ontol-
ogy the items that are (un)appealing to the user (defined in his/her profile). Next, we traverse successively the properties
bound to these items until reaching new class instances in the ontology, referred to other items and their attributes. In order
to guarantee computational feasibility, we have developed a controlled inference mechanism that progressively filters the
instances of classes and properties that do not provide useful knowledge for the personalization process:

� As new nodes are reached from a given instance, we firstly quantify their relevance for the user by an index named seman-
tic intensity (denoted by kSem(n) for node n), whose computation process will be described in this section.
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� Next, the nodes whose intensity indexes are not greater than a specific threshold are disregarded, so that our inference
mechanism continues traversing only the properties that permit to reach new nodes from those that are relevant for the
user.

In order to measure the semantic intensity of a node n, we take into account various ontology-dependent pre-filtering cri-
teria, so that the more significant the relationship between a given node and the user’s preferences, the higher the resulting
value. Some of these criteria (described in detail in [9]) are summarized next:

(1) Length of the property sequence that enables to reach the node starting from the user’s preferences. The longer this
sequence, the lower the semantic intensity of the node because its relationship to the user’s preferences is less signif-
icant due to the presence of many intermediate nodes.

(2) Existence of hierarchical relationships between the node and the user’s preferences. The intensity of a node increases when
it is possible to find a common ancestor between it and the user’s preferences in the hierarchies defined in the
ontology.

(3) Existence of implicit relationships between the node and the user’s preferences detected by graph theory betweenness. In
graph theory [16], the betweenness among three nodes is high when in the most of paths from the first node to
the second one, the third node is also included. Therefore, from a high value of betweenness, it follows that the
involved nodes are strongly related. In our approach, these nodes are the user’s preferences and the class instance
whose relevance is being measured.

Once the nodes related to the user’s preferences (and also the properties linking them to each other) have been selected,
our strategy infers semantic associations between the instances referred to items that can be recommended. As per the cat-
egorization of semantic associations described in Section 2.1, we detect the following relationships between the items de-
fined in the user’s Ontology of Interest:

� First, q-path associations between the items that are joined by a property sequence in the Ontology of Interest, as it hap-
pens with the programs Hell’s kitchen and Indian culinary specialties in Fig. 2, which are linked by the instance cooking in
the ontology.
� Second, q-join associations between, for instance, the items whose attributes belong to a union class in the ontology. As

an example, the programs Renaissance sculpture and The Art of ceramics in Fig. 2 are associated because both are about
plastic arts strongly related to each other (as shown in the class hierarchy of the figure, sculpture and ceramics belong
to the union class Plastic arts).

Starting from the user’s Ontology of Interest and the semantic associations inferred among its nodes, we create the user’s
SA network, whose knowledge is explored during the second phase of the strategy by exploiting the inference capabilities
provided by SA techniques.

4.2. Creation of the user’s SA network

The user’s SA network can be easily built starting from his/her Ontology of Interest. Specifically, the nodes of this network
are the class instances selected by the pre-filtering phase of our strategy. The knowledge learned in this first phase also helps
to identify the links that relate the nodes to each other, which permit to carry out the inference processes toward recommen-
dations. In this regard, our SA approach defines two kind of links:

� Real links. These links model the knowledge that is explicitly represented in the user’s Ontology of Interest. Specifically,
we consider a real link in the user’s SA network for each one of the property instances included in his/her Ontology.
� Virtual links. These links refer to relationships inferred from the Ontology of Interest. In this group, we include both simple

hierarchical relationships and the complex semantic associations discovered from the properties and hierarchical links of
the user’s Ontology of Interest. According to the nature of both relationships, we identify two kind of virtual links:
– Associative virtual links. We consider an associative virtual link between each pair of items related by q-path or q-join

associations. For instance, from the associations depicted in Fig. 1, we define three associative virtual links: between
items i1 and i5, due to the q-path association; between items i1 and i6, due to q-join; and between items i5 and i8, again
due to q-join.

– Hierarchical virtual links. We consider a hierarchical virtual link between the two instances belonging to the union class
that causes q-join associations. For instance, in Fig. 1 it is possible to establish a virtual link between items i3 and i7,
which are classified under the union class C.

We define a new type of structure (named virtual path) starting from q-join associations existing between two specific items.
This structure permits to go from one item to the other by crossing a minimum number of real links and the hierarchical link
that originates the q-join association between the two items. The length of the virtual path is defined as the number of real
links contained in it. As an example, in Fig. 1 it is possible to find a virtual path (of length 3) between items i1 and i6, which
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consists of the real links i1–i2, i2–i3, i7–i6 and the hierarchical link i3–i7. Analogously to what happens with property
sequences, the shorter a virtual path between two items, the more relevant their relationship will be, due to the presence
of few intermediate nodes between them.

4.3. Weighing links in the user’s SA network

As we explained previously, incorporating the personalization requirements of our recommendation strategy into classic
SA techniques requires to adapt the weighing process of the links modeled in the user’s SA network. Instead of considering
that the weight of a link between two nodes depends only on the strength of their mutual relationship, our approach im-
poses two constraints on the links to be weighed:

� First, given two nodes joined by a link, we consider that the stronger the (semantic) relationship between the two linked
nodes and the user’s preferences, the higher the weight of the link.
� Second, the weights are dynamically adjusted as the user’s preferences evolve over time, thus offering permanently

updated content-based recommendations.

In our approach, the weight of the links are assigned by combining two parameters: (i) the contribution of the two linked
nodes, measured by their respective relevance functions and (ii) the type of link considered.

4.3.1. Relevance function of a node
The aim of the relevance function of a node in the SA network is to quantify its importance for the user, by considering

his/her personal preferences and the knowledge learned from his/her Ontology of Interest. Eq. (3) shows how we compute
the value of the relevance function for the node i which is linked to the node j (denoted by fj(i)):
2 The
fjðiÞ ¼
DOIUðiÞ if i is defined in U’s profile
kSemðiÞ otherwise

�
ð3Þ
� If the node i is defined in the user U’s profile, the value of its relevance function fj(i) is its level of interest DOIU(i), since this
is the most appropriate indicator to measure how relevant the node i is for the target user.
� Otherwise, fj(i) equals the value of the semantic intensity of the node i, so that the higher kSem(i), the most significant the

relationship between i and the user’s preferences, and therefore, the more relevant the node i is for him/her (remember
Section 4.1).

4.3.2. Type of link to be weighed
The weights assigned to the virtual links are lower than those set for the real links. The intuition behind this

idea is that the relationship existing between two nodes joined by a real link is explicitly represented in the user’s
Ontology of Interest by means of properties, while the relationship between two nodes joined by a virtual link has
been inferred by a reasoning-driven prediction process. Thus, as established by Eq. (4), the weight of the link
between nodes i and j is computed by combining an attenuation factor lij 2 [0,1) with the relevance values of both
nodes.
wij ¼ wji ¼
0:5 � ðfiðjÞ þ fjðiÞÞ in case of real link

0:5 � lij � ðfiðjÞ þ fjðiÞÞ in case of virtual link

(
ð4Þ
As shown in Eq. (5), the value of the factor lij depends on the kind of virtual link established between nodes i and j. Specif-
ically, the weights of the hierarchical virtual links are reduced by a factor 0.85 that prevents the contribution of these links
from suffering an excessive decrease.2 On the contrary, the value of lij for the associative virtual links depends on the relevance
of the semantic association inferred between the two linked nodes, so that the stronger the relationship between i and j, the
higher the value of lij. Specifically, we consider that the closer two nodes in the user’s SA network, the stronger the association
between them. The distance metric defined in our approach depends on the type of association inferred between the two linked
items (i and j):

� In case of a q-path association, we use the length of the property sequence between i and j (length(ps) in Eq. (5)) in order
to measure the strength of the relationship. The higher the length of the sequence, the less significant the association and,
therefore, the more severe the attenuation of the weight corresponding to the associative link between the two joined
nodes.
� In case of a q-join association, we use the length of the virtual path existing between nodes i and j (length(vpath)), as

shown in Eq. (5).
value 0.85 has been empirically adjusted after numerous experiments.
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lij ¼
0:85 for hierarchical virtual link
1
l̂ij

for associative virtual link

(

l̂ij ¼
lengthðpsÞ if q� pathði; jÞ
lengthðvpathÞ if q� joinði; jÞ

�
ð5Þ
From our weighting process, it follows that the weight of an associative virtual link between two nodes depends both on
their relevance for the user (just like in real links and hierarchical virtual links) and on the kind of semantic associations in-
ferred between both nodes. These two contributions permit to differentiate our personalization approach from other existing
SA proposals where there is no place for complex relationships.

4.4. The processes of spreading activation and selection of recommendations

Once the knowledge learned about the user’s preferences has been modeled in his/her SA network, we process the seman-
tics of its nodes and links by an improved spreading activation mechanism:

� Firstly, we activate in the user’s SA network the nodes referred to the items defined in his/her profile, considering both
his/her positive and negative preferences. The positive preferences permit the spreading process to identify items that are
significant for the user, because they are related to items he/she enjoyed in the past. The negative preferences lead to
detect items that must not be suggested due to their relationships to unappealing items.
� Secondly, we assign the activation levels of all the nodes in the network. We use the DOI indexes defined in the user’s

profile for the nodes initially activated, and a value 0 for the remaining nodes.
� Next, the activation levels of the user’s preferences are propagated through the SA network by using the Hopfield Net algo-

rithm, which is in charge of selecting the items with high levels to be recommended to the user. The principle of parallel
search of this algorithm is especially beneficial for our personalization approach, because the capability of activating in
parallel all the nodes in the user’s SA network permits to carry out the spreading process in an efficient way. Specifically,
the algorithm computes the activation level of each node in the user’s SA network by adding the contribution from all of
its neighbor nodes. This contribution considers both the activation level of each neighbor node and the weight of the link
(real or virtual) joining it to the considered node. For that reason, the more relevant the neighbors of a node (i.e. the
higher activation levels) and the stronger the relationships among them and the considered node (i.e. the greater weights
of links), the more significant this node will be for the user. This contribution is incorporated as an argument into the
sigmoid function used by Hopfield Net (see Eq. (1)). As shown in Eq. (3), the weight of a link is computed starting from
either the DOI indexes of the two joined nodes (if they are defined in the user’s profile) or from their semantic intensity
values (otherwise). Consequently, it holds that:
– The sigmoid function measures the highest activation values for nodes which are connected both to class instances

very appealing to the user (whose DOI indexes are very significant), and to nodes greatly related to his/her positive
preferences (whose semantic intensity is very high).

– Analogously, according to the internals of our content-based strategy, the sigmoid function quantifies low activation
levels for class instances which are related to the users’ negative preferences, thus preventing from suggesting these
items.

Finally, our strategy selects the items to be suggested to the user. Specifically, the strategy recommends only the items of
the user’s SA network whose activation level is greater than a configurable threshold d. This parameter is clearly dependent
on the application domain and the recommender system that adopts our strategy. Anyway, the values must be always very
high (close to 1) to guarantee that the items suggested are closely related to the user’s preferences.3

5. A sample scenario

The research work of our content-based recommendation strategy has been tested in the scope of a TV recommender sys-
tem (named R-AVATAR), which is being deployed over the cable networks of a Spanish operator with about 80,000 subscrib-
ers that broadcasts daily 43 TV channels. The goal of this system is to identify potentially appealing programs to each
subscriber among the contents available in the digital stream. In this section, we illustrate how to select the TV programs
that are most appealing to a user by considering the knowledge formalized in the excerpt from the TV ontology depicted
in Fig. 2. Even though this ontology contains a reduced number of classes, properties and instances, it serves to highlight
the differences between our reasoning-based recommendations and those offered by traditional (syntactic) content-based
approaches. Assume a TV viewer U whose positive and negative preferences are shown in Table 1, including the TV programs
U liked and disliked in the past, his/her DOI indexes (in brackets), and the classes under which these programs are catego-
rized in the hierarchy of genres defined in the TV ontology.
a guidance, note that we have used the parameters h1 = 10, h2 = 0.8 and n = 0.08 (for the Hopfield Net algorithm), and recommendation thresholds d in
ge [0.78,0.9] in the tests carried out in the Digital TV field.



Table 1
Positive and negative preferences of the viewer U.

Classes in genre hierarchy Subclasses in genre hierarchy TV programs (and DOI indexes)

Leisure Tourism Inside Sydney (1)
New York in a nutshell (0.9)

Cookery On the stove (�0.9)

Non fiction Cultural Ganges: River to heaven (1)
Art Renaissance sculpture (1)
Reality Shows Hell’s kitchen (�1)

Fiction Drama Hamlet (0.9)
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According to the DOI indexes, U has enjoyed two Leisure contents about major tourist attractions in Sydney and New York,
respectively. User U also liked a documentary about the Indian region of Varanasi (through which river Ganges flows), the
drama movie Hamlet, and an art documentary about the sculpture in the Renaissance. Regarding U’s negative preferences, note
that two TV programs about cookery were unappealing to this viewer.

Considering the TV programs available in the ontology depicted in Fig. 2, existing content-based strategies would only be
able to suggest to U contents sharing the same attributes defined in his/her profile, like (i) the movie The merchant of Venice,
set in the Renaissance period just like Renaissance sculpture; (ii) the movie Braveheart, which involves the actor Mel Gibson like
Hamlet; and (iii) the documentary entitled Michelangelo’s David because it shares topics with Renaissance sculpture. In con-
trast, we shall see how our two-phase strategy exploits semantic associations and improved SA techniques to select diverse
suggestions based on reasoning.
5.1. Pre-filtering phase (I): selection of instances relevant for U

First, our strategy selects U’s Ontology of Interest by using the pre-filtering criteria described in Section 4.1. The result is
depicted in Fig. 4.

� The instances Varanasi, Sculpture, Renaissance, Mel Gibson, New York, Sydney and Cooking are selected by the two first cri-
teria, because all of them are directly related to U’s preferences by means of properties in the excerpt from the ontology
shown at the bottom of Fig. 2. This fact increases the semantic intensity values computed by our pre-filtering mechanism.
� As shown in Table 1, U has enjoyed a cultural program about a plastic art closely related to ceramics. For that reason, the

instance Ceramics is selected, because it shares the common ancestor Plastic Arts with the instance Sculpture stored in U’s
preferences, as shown at the top of Fig. 2.
� The hierarchical relationships between U’s preferences and other class instances in the ontology permit to select the

nodes Delhi and Bombay. Specifically, these instances belong to the same class as Varanasi (i.e. India cities in Fig. 2), a city
linked to the documentary Ganges: River to heaven that U has enjoyed.
� Finally, the programs Taj Mahal travelers tour, The merchant of Venice, Braveheart, Indian culinary specialties, On the stove

and Michelangelo’s David are included in U’s Ontology of Interest because they share common ancestors with his/her pref-
erences. These are Tourism, Drama, Cookery and Arts, as shown at the top of Fig. 2.
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5.2. Pre-filtering phase (II): inference of semantic associations

After delimiting the user’s Ontology of Interest, our strategy infers semantic associations between the (positive and neg-
ative) preferences of U and the TV programs represented in his/her Ontology of Interest, as explained in Section 4:

� Firstly, the documentary The art of ceramics is related to the program Renaissance sculpture, that was appealing to U. Spe-
cifically, we infer an association between these contents due to the fact that both are about closely-related plastic arts
(ceramics and sculpture, respectively). This leads to a q-join association by the union class Plastic arts.
� Secondly, the documentary Ganges: River to heaven defined in U’s profile is associated with the tourism program Taj Mahal

travelers tour, because both contents are linked to different cities in India (Varanasi and Delhi, respectively), leading to a q-
join association through the union class India cities.
� Finally, our strategy also discovers semantic associations between the programs included in the user’s Ontology of Inter-

est and U’s negative preferences. As shown at the bottom of Fig. 2, Indian culinary specialties is related to the programs On
the stove and Hell’s kitchen, because they are devoted to cooking, which seems to be an unappealing topic to U (see Table
1). The property sequence established between Indian culinary specialties and On the stove by the instance Cooking leads to
a q-path association between both programs. Analogously, our approach also infers a q-path association between the pro-
gram about Indian cookery and Hell’s kitchen. However, as Bombay is located in the country of interest for U, it is also pos-
sible to establish a q-join association between Indian culinary specialties and his/her positive preferences (by the union
class India cities). In this case, SA techniques must explore the two kinds of relationships and decide whether the program
about Indian cookery should be suggested to U or not. For that purpose, our strategy firstly builds the user network by
including both the instances selected by the pre-filtering phase and the discovered semantic associations, as shown in
Fig. 5.

5.3. Recommendation phase: reasoning via SA techniques

U’s SA network is weighed by assigning the highest values to the links established between nodes that are very relevant
for the user (i.e. strongly related to his/her preferences).4 After activating initially U’s preferences and spreading their acti-
vation levels though his/her network, our strategy ends up recommending the following programs:

� The art of ceramics. Firstly, we discover the interest of the user in the program The art of ceramics due to a high activation
level obtained after the spreading process. According to the user’s SA network depicted in Fig. 5, this level is computed by
the Hopfield Net algorithm by combining two contributions in the sigmoid function: (i) the activation levels of the two
nodes reaching The art of ceramics (i.e. Renaissance sculpture and Ceramics) and (ii) the weights of the two links joining
both nodes to the program about ceramics.
4 In order to compute these weights, it would be necessary to consider the full domain ontology, instead of just a brief excerpt from it. For that reason, we do
not consider numerical values in the example; instead, we value qualitatively the weights assigned to the links in U’s SA network.
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– Node Renaissance sculpture. In accordance with the weighting process described in Section 4.3, the weight of a link
between two nodes depends either on their DOI indexes (if these nodes are defined in the user’s profile) or on their
semantic intensity values (otherwise). Since the node referred to the documentary Renaissance sculpture is defined
in U’s profile, Eqs. (3) and (4) lead to the following weight for the link between the program about sculpture and
the content about ceramics (which are related by a q-join association)

wij ¼ 0:5 � li;j � ðDOIUðRenaissance sculptureÞ þ kSemðThe art of ceramicsÞÞ
According to U’s SA network in Fig. 5, Renaissance sculpture and The art of ceramics are joined by a virtual path of length 2,
so that Eq. (5) leads to lij = 0.5, and besides DOIU(Renaissance sculpture) = 1. Regarding the semantic intensity of The art of
ceramics, it also gets a high value because this documentary is closely related to U’s preferences, as we commented in pre-
vious sections. Gathering these contributions, we compute a high weight for the link coming from the node Renaissance
sculpture. In order to obtain the activation level for The art of ceramics, the Hopfield Net algorithm combines the weight of
this link with the level propagated from the node Renaissance sculpture. As the program about sculpture is defined in U’s pro-
file, its activation level equals its DOI index in the preferences depicted in Table 1. These contributions help to increase the
activation level of the program about ceramics.

– Node Ceramics. The weight of the real link between this node and the program The art of ceramics is computed anal-
ogously to what we explained before. In this case, the class instance Ceramics is not defined among the U’s preferences,
hence Eqs. (3) and (4) lead to the following weight for this link:
wij ¼ 0:5 � ðkSemðCeramicsÞ þ kSemðTheartofceramicsÞÞ
The semantic intensity of the instance Ceramics is high in this example because this node is strongly related to the po-
sitive preferences of the user U (who is greatly interested in the plastic art of sculpture). Regarding the activation level that
Ceramics propagates to the program about ceramics, note that it gets a high value because the node is joined by a hierarchical
virtual link to other node very relevant for U (Sculpture in Table 1). This hierarchical link tends to increase the level of Ceram-
ics, thus helping to make the activation level propagated to the program about ceramics higher. Thanks to this level and the
weight of the real link mentioned before, the Hopfield Net algorithm measures a high activation level for the program about
ceramics, which is finally recommended to the user.

� Taj Mahal Travelers Tour. Our strategy suggests to U the program Taj Mahal travelers tour by considering: (i) the highly
weighed links coming from the nodes Ganges: River to heaven and Delhi, and (ii) the high activation levels of both nodes
after the spreading process carried out by the Hopfield Net algorithm.
– Node Ganges: River to heaven. On the one hand, this program is defined in U’s profile with a maximum DOI index

(whose value is 1); for that reason, it propagates a high activation level to the content about Taj Mahal. On the other
hand, the pre-filtering phase measures a high value of semantic intensity for the program Taj Mahal travelers tour due
to its relationship with the positive preferences of the user U (who is interested in programs about tourist attractions
and related to India). The DOI index of Ganges: River to heaven and the semantic intensity value of the program about
Taj Mahal are mixed by Eqs. (4) and (5), leading to a high weight for the associative virtual link established between
the two programs. This fact increases greatly the activation level of Taj Mahal travelers tour.

� Node Delhi. According to Table 1, U enjoyed the region of Varanasi along which river Ganges flows. The relevance of
this region is propagated to the node Delhi thanks to the hierarchical virtual link established between the two class
instances in U’s SA network. Analogously, thanks to a real link the relevance of Delhi for U is spread to the content
Taj Mahal travelers tour, thus increasing its activation level and causing this program to be finally suggested to the
user.

At the core of our proposal, our reasoning mechanism based on SA techniques allow to identify items that must not be
recommended to the user. The semantic associations establish only bonds among the available items, whereas SA techniques
are in charge of looking into those relationships in order to decide whether an item must be suggested to the user when it is
related to both his/her positive and negative preferences. Let us clarify this point through an example.

As shown in U’s network, Indian culinary specialties receives links from the programs Ganges: River to heaven, Hell’s kitchen
and On the stove. The first program has a very significant DOI index which helps to increase the activation level of the pro-
gram about Indian cookery. On the contrary, the negative DOI indexes of the two other programs tend to reduce this level.
These values are finally combined with the negative value injected from the node Cooking. As a result, a low activation level
is obtained for the program Indian culinary specialties. In other words, even though this program is bound to a country of
interest for U (India), our reasoning processes discover that its topic is unappealing to him/her, so Indian culinary specialties
is not finally suggested.

As a conclusion, note that the diverse nature of our reasoning-based recommendations is due to the fact that the sug-
gested programs do not have the same attributes defined in the user’s profile (e.g. Sculpture and Varanasi bound to the pro-
grams Renaissance sculpture and Ganges: River to heaven, respectively, in Table 1). Rather, they are related to his/her
preferences from a semantic point of view. For instance, recall that a user who had liked a program about sculpture has
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received recommendations about ceramics (branch of plastic arts related to his/her interests) and about India, a country of
deep-rooted art tradition.

6. Preliminary evaluation

We have set our first testing experiences in the context of Digital TV, because this is the scope where the R-AVATAR sys-
tem will be deployed, implementing our recommendation strategy. Our long-term goal is to carry out a rigorous quantitative
evaluation – driven by accuracy metrics typically adopted in personalization works – after the deployment of the system,
when we will handle a real scenario with about 1000 TV contents every day and 80,000 potential users accessing our rec-
ommendations over a long period of time. Unfortunately, the end of the deployment is expected for the second half of 2011,
which would cause a significant delay in our research works to continue improving the approach. For that reason, this sec-
tion focuses only on the tests that we have carried out in a pre-deployment stage. Our evaluation was organized as follows:

� First, the goal was to qualitatively measure the opinions of a set of 150 users about our reasoning-driven content-based
recommendations, which is a must before deploying the system toward ensuring successful recommendations. The users
involved in the tests were recruited from among our (under) graduate students, their relatives and friends. As a common
method of evaluation in the personalization area (see [31,20,5]), we have resorted to questionnaires which lead to a quick
feedback from the users about the personalization quality achieved.
� Second, the purpose was to analyze that relevance feedback by statistical techniques that will help us identify which

parameters influence on the ratings given by the users to our reasoning-driven content-based recommendations.

We did not consider recommendations offered by existing content-based approaches [41,30] in our tests because they do
not furnish any alternative solution for overspecialized recommendations that could be compared against our semantic rea-
soning mechanisms (remember the sample recommendations described in Section 5). Regarding existing semantics-based
collaborative (and hybrid) systems [33,13,29,40], their recommendations were not compared against ours because their phi-
losophies are essentially different. Specifically, some recommendations selected by collaborative approaches would go unno-
ticed to our strategy (because we do not consider the profiles of other users), and vice versa (because existing approaches
disregard the relationships discovered by our semantic reasoning techniques). An evaluation to assess quantitatively these
approaches against our proposal in terms of scalability and performance will be postponed until the end of R-AVATAR
deployment.

6.1. Experimental setup

For our pre-deployment experiments, we have built an ontology about the TV domain containing about 50,000 nodes re-
ferred to specific TV programs and their semantic attributes. Besides, we have developed a validation tool whose main func-
tionalities are: (i) initialization and modeling of user profiles, (ii) updating of preferences from the user-provided relevance
feedback, and (iii) delivery of personalized recommendations by executing our reasoning-driven content-based strategy.

Specifically, the structure of classes and properties in the TV ontology has been automatically extracted from the TV-Any-
time metadata specification [38], which standardizes XML files describing multiple attributes of audiovisual contents (e.g.
genres, credits involved in the programs, and target audience), as shown in Fig. 2. To tackle this automatic process, we have
used an XSL sheet with several transformation rules to convert XML elements into OWL components. Once the classes and
properties had been defined, we populated the OWL knowledge base by including specific TV programs and their semantic
attributes. Specifically, the programs were extracted from the databases AMG (All Movie Guide) and IMDB (Internet Movie
DataBase), the BBC website5 and even RSS websites like The History Channel.6 The population process was semi-automatic:
firstly, we automatically retrieved most of the semantic descriptions of specific TV programs from the mentioned databases;
next, those annotations were refined manually by adding values for TV-Anytime attributes defined in our ontology.

The knowledge formalized in our ontology was queried by an OWL-specific API (Application Programming Guide) provided
by ProtTgT,7 a free open-source tool that includes mechanisms to create, view and query the classes, properties and specific
instances formalized in OWL ontologies. Thanks to these mechanisms, we also obtained graphical interfaces to (i) initialize
and update the users’ profiles, (ii) display the list of TV programs suggested for each viewer, and (iii) develop auxiliary tools
to explore the semantic reasoning processes. Specifically, we have developed a tool (named Reasoning Inspector) that permits
to understand the kind of semantic associations that lead to our diverse content-based recommendations. In order to imple-
ment this tool, we have used an ontology-viewing plugin provided by ProtTgT, named TGVizTab,8 that allows to create and
browse generic graphs in a dynamic and interactive way. The nodes in the graph are the classes (and their instances) in the
domain ontology, whereas the links identify the properties and relationships existing among the nodes. For clear and intu-
itive exploration, the plugin includes configuration options in order to: (i) control the knowledge represented in the graph,
5 http://backstage.bbc.co.uk/data/7DayListingData.
6 http://www.history.com/.
7 http://protege.stanford.edu/
8 See http://users.ecs.soton.ac.uk/ha/TGVizTab/ for details.

http://backstage.bbc.co.uk/data/7DayListingData
http://www.history.com/
http://protege.stanford.edu/
http://users.ecs.soton.ac.uk/ha/TGVizTab/


Y. Blanco-Fernández et al. / Information Sciences 181 (2011) 4823–4846 4837
(ii) show only some properties of a class or specific instance, or (iii) depict subgraphs where it is possible to show or hide the
links that relate some nodes to others.

Thanks to our Reasoning Inspector, we can display a graph that represents only the user’s Ontology of Interest, including
his/her preferences and the semantic associations inferred among them and the TV programs to be suggested. We can even
interact with the depicted graph by selecting some nodes and showing both the properties and hierarchical relationships
formalized in the graph, and the semantic associations inferred from them. Since this graph identifies the user’s SA network,
our Reasoning Inspector allows also to control the spreading process carried out by the Hopfield Net algorithm, thus enabling
the exploration of the nodes in the user’s SA network, the real and virtual links established among the nodes, and the acti-
vation levels resulting from the propagation process, as shown in the snapshot of Fig. 6.

After implementing our validation tools, the experimental design was organized as follows:

� Initially, the 150 users involved in our tests logged in a web page by their e-mails and filled in a form to initialize their
personal profiles. This form included a list of 200 TV programs to be rated by the users on a scale from 0 to 9 (with 0
representing the greatest disliking and 9 the greatest liking). The TV programs were classified into a hierarchy of genres
(extracted from the TV ontology) including CATEGORIES/subcategories (e.g. NEWS: national, economy; SPORTS: athletics,
cycling; MUSIC: jazz, rock, etc.). Besides, each TV program was shown with a brief textual description, in such a way that
the users could even rate contents they did not know.
� Then, the information about the users’ preferences was processed by our validation tool, that was in charge of (i) mod-

eling the users’ profiles as described in Section 3.2, and (ii) executing our reasoning-driven recommendation strategy.
� Next, we processed the output of our strategy in order to promote our reasoning-based recommendations to the detri-

ment of traditional content-based ones driven by syntactic metrics. This is because our strategy is able to select both con-
tents associated to the user’s preferences and programs that share the same attributes defined in his/her profile.
Fig. 6. Snapshot of our testing tool based on TGVizTab plugin: the user’s preferences are marked with red squares in his/her SA network; the real links are
represented by black thick lines, associative virtual links are identified by green lines appearing thicker, and hierarchical virtual links are marked with
dotted lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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� In order to help the users understand our recommendations, we created a brief synopsis for each suggested TV program
with the aid of the Reasoning Inspector. Specifically, the synopsis of a TV program explained the existing associations
between that content and the programs the users had rated highly when initialized his/her profile.
� Finally, we daily e-mailed to each user a recommendation with 8 TV programs (and their synopses) and requested them

to provide us with relevance feedback by rating each suggested content. These ratings were employed to update the user
profiles and select new recommendations day after day over the 7-day testing period.

6.2. Preliminary experimental results

In order to assess the quality of our recommendations, we measured daily their precision for each user, defined as the per-
centage of suggested TV contents that were interesting for him/her (i.e. the ones that got a rating greater than 6 in the rel-
evance feedback). Finally, we averaged the daily precision values over the 7-day testing period, and sent the users an e-mail
with a questionnaire (where we reminded the list of 56 TV programs recommended to the user during the experiments)
including questions such as: ‘‘do you think that your recommendations were diverse or very repetitive, and why?’’, ‘‘did you know
the TV programs we suggested?’’, ‘‘would you be willing to pay for receiving our recommendations?’’, ‘‘how do you assess globally
our personalization capabilities?’’, ‘‘how many hours do you spend each week watching TV?’’, just to name a few. From the users’
answers, we could evaluate the global utility of our recommendation strategy and draw interesting observations:

� The precision values ranged between 79% and 51% approximately: most of the users (82%) obtained more than 70% of
precision, while just 8% of them achieved less than 60%. These values did increase over time thanks to the feedback pro-
vided by the users after the recommendations, which helped our reasoning-driven strategy to know their preferences
better.
� Most of the users involved in the tests (78%) evaluated our personalization capabilities positively or very positively, while

the remaining ones either remained indifferent (18%) or did not find the reasoning-driven recommendations appealing
(4%).
� Nearly all the users noticed the diverse nature of the recommendations received during the last days of testing period. In

fact, most of these users (about 76%) told us that they did not know some of the suggested TV programs; however, they
admitted that the way to relate the programs to their personal preferences was really ‘‘ingenious’’, ‘‘peculiar but appropri-
ate’’ and even ‘‘intelligent’’.
� From the questionnaires, we also discovered that most of the users (84%) would be willing to pay a (small) added fee for

receiving our recommendations, which undoubtedly evidences the interest of our content-based approach.

In spite of the preliminary nature of our experimental tests, this evaluation has permitted us to check good results of rec-
ommendation precision, as well as the users’ acceptance about our reasoning-driven recommendations. The next step was to
use statistical techniques in order to analyze up to which extent the users’ ratings in the recommended programs were influ-
enced by parameters that we knew from the initial questionnaires and from the relevance feedback. In order to consider
these dependences, we relied on: (i) a multiple linear regression model, which allows to predict a user’s score on one variable
(named the criterion variable) on the basis on his/her score on several other variables (named the predictor variables) and (ii)
the package SPSS,9 a commonly adopted software for statistics-driven analysis.

6.3. Statistical analysis

The statistical analysis carried out in our evaluation considers variables such as diversity of the recommendations, ratings
in genres related to the suggested programs, viewing habits and so on, which might all contribute towards the user satisfac-
tion with our suggestions. If we handle data on all of these variables, we can see how many and which of them gave rise to
the most accurate prediction of user satisfaction. In our statistics-driven evaluation, we used as criterion variable the user
ratings in the recommended programs (hereafter rating_program), and as possible significant predictor variables the following
ones:

� Users’ ratings in the genres of the recommended programs (hereafter ratings_genres). This is a continuous variable with
values between 0 and 9. These values were inferred from the ratings the users assigned to 200 TV programs when initial-
izing their profiles.10

� Positive perception about the recommendations (perception_recom). This variable takes as values 1 (when users rated as
positive or very positive the recommendations including the suggested program) or 0 (otherwise).
� Diversity of the recommendations (diversity_recom). The values are 1 (if the user has rated as diverse the recommendation

in which the suggested program was included) or 0 (in case of specialized recommendation).
9 Statistical Package for the Social Sciences (http://www.spss.com).
10 We assume that the rating of a program is inherited by the genre(s) which it belongs to. If the program is categorized under several genres, we average all

their ratings to set the value of the predictor variable rating_genres.

http://www.spss.com
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� Information about recommended programs (info_program). This variable takes as values 1 (if the user said in the question-
naire that he/she knew the program prior to our recommendation) or 0 (otherwise).
� Number of hours per week that the user spends watching TV (TV_hours). It is a continuous variable whose values fall in

the range [0,24 ⁄ 7].

The interpretation of the regression model driven by the predictor variables above is as follows: a user’s rating in a rec-
ommended program depends on: (i) his/her level of interest in the genres under which the program is classified in the TV
ontology, (ii) his/her opinion about the recommendation including this program, (iii) the diverse or specialized nature of
such recommendation, (iv) the fact that the user might know the suggested program before our suggestion, and (v) the
amount of time the user watches TV per week.

According to the guidelines included in Appendix A, using linear regression requires a large number of observations and
non-collinear predictor variables, to draw valid statistical inferences from the resulting model. Regarding the first require-
ment, we handled 150 observations (justs as many as users took part in our experiments). In order to study the linear depen-
dencies between the predictor variables and the users’ ratings in our recommendations, we randomly chose one of the
programs our strategy suggested over 7-day testing period to each one of the 150 involved users. Finally, to corroborate
non-multicollinearity among the 5 predictor variables, we examined their correlation matrix with the aid of SPSS. We did
find a multicollinearity problem in the series: specifically, the high correlation value between perception_recom and diver-

sity_recom (0.918) revealed a narrow relationship between the user’s global perception about our recommendations and their
diversity. Analogously, the correlation value 0.930 between info_program and TV_hours means that the fact that the user
knows beforehand a recommended program is strongly related to the time he/she spends watching TV.

In order to remove the multicollinearity problem, we resorted to factor analysis (see Appendix C) to find the latent factors
that account for the relationships existing among multiple metric variables. In Section 6.3.1, we describe the factors ex-
tracted from the variables that correlate highly with each other. Only the most significant variable of each factor (whose
selection is explained in Section 6.3.2) was used as a predictor in the multiple regression model presented in Section 6.3.3.
6.3.1. Factor analysis
As per the guidelines explained in Appendix C, our factor analysis was organized as follows:

� First, we determined the factorability of the correlation matrix through Kaiser–Meyer–Olkin measure of sampling ade-
quacy. The resulting value (KMO = 0.86) confirms that the data are suitable for factor analysis because the factors
extracted will account for a ‘‘meritorious’’ amount of the variance of the predictor variables (see Table C.1).
� Second, we extracted factors from the correlation matrix by exploiting the principal components method provided by SPSS.

According to Table 2 and Kaiser’s criterion, three components or factors were extracted for having eigenvalues greater
than 1.0.
� In order to interpret/understand what the extracted factors measure, we need to identify which variables load (correlate)

highest on each factor. To this aim, it is necessary to analyze the factor loadings included in the component matrix com-
puted by SPSS. With the goal of clarifying the factor pattern, we have resorted to the varimax rotation method (see Appen-
dix C), obtaining the rotated components matrix shown in Table 3.
� As per the rotated component matrix, perception_recom and diversity_recom load on the first component or factor (hereafter

F1); info_program and TV_hours are highly correlated on the second component (F2), and finally rating_genres load on the
third component (F3). According to the meaning of our predictor variables, we named the factors as follows: F1 was
named nature of the recommendations because it brings together the users’ global perception and the type of recommen-
dation. Factor F2 has been named experience of the viewer because it summarizes the programs known by the user and the
time he/she spends with TV. Regarding F3, it is difficult to understand this factor since only one variable loaded high on it.
In absence of more variables, we named it interest in TV content genres.

This three-factor solution seems reliable due to two main reasons. On the one hand, the extracted factors account for a
high percentage of the variance in the criterion variable (88.2% from Table 2). On the other, even though F3 is ambiguous
(because it only involves one predictor variable), the factor pattern is very clear for the first two components.
Table 2
Eigenvalues and total variance explained by the components extracted by principal components method.

Component Initial eigenvalues Extraction sum of squared loadings

Total % of variance Cumulative % Total % of variance Cumulative %

1 2.02 40.4 40.4 2.02 40.4 40.4
2 1.28 25.6 66 1.28 25.6 66
3 1.11 22.2 88.2 1.11 22.2 88.2
4 0.56 11.2 99.4
5 0.03 0.6 100



Table 3
Rotated component matrix.

Predictor variables Component

1 2 3

Rating_genres 0.134 0.1722 0.852
Perception_recom 0.954 0.131 0.268
Diversity_recom 0.938 0.081 0.174
Info_program 0.2272 0.751 0.362
TV_hours 0.380 0.814 0.374

Table 4
Model summary: model 1 (Predictors: diversity_recom, info_program, rating_genres); model 2 (Predictors:
diversity_recom, TV_hours, rating_genres); model 3 (Predictors: perception_recom, info_program, rating_genres);
model 4 (Predictors: perception_recom, TV_hours, rating_genres).

Model R R2 Adjusted R2

1 0.9349 0.874 0.8714
2 0.9123 0.832 0.829
3 0.889 0.7903 0.786
4 0.862 0.743 0.738
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After identifying the factors hidden behind the five initial variables, we selected the most significant one of each compo-
nent and included it in our multicollinearity-free multiple regression model.

6.3.2. Selecting the most significant variable for each factor
As the most significant variable of each factor, we have chosen the one with the highest correlation to the criterion var-

iable of our regression model. To make this selection, we computed via SPSS the correlation matrix including the five initial
predictor variables along with rating_program. As per the resulting correlation matrix, the most significant variables for F1 and
F2 and diversity_recom and info_program, respectively.11

This selection has been validated by computing the linear regression models for the possible combinations of the predic-
tor variables that load on F1 and F2, and focusing on their respective squared multiple correlation coefficients (R2). As per the
results depicted in Table 4, the best regression model corresponds with the series including as predictor variables diver-

sity_recom, info_program and rating_genres. This model accounts for 87.4% of the variance in the criterion variable. This means
that if we select randomly a user about whom we know nothing, there is uncertainty (variance) about which will be his/her
value for rating_program; however, if we know additional information about the predictor variables, our regression model al-
lows us to predict the user’s rating with 87.4% less uncertainty compared to the previous scenario.

6.3.3. A multiple linear regression model
Having identified the predictor variables of our regression model, we computed their coefficients to measure how much

they influence the criterion variable. With the aid of SPSS, we obtained the values of Table 5 and assessed the overall signif-
icance of the resulting regression model by analyzing its variance by ANOVA tests (Table 6).

� In order to analyze the impact of each predictor variable on the rating_program, we focused on the standardized b coeffi-
cients in Table 5. The large value of the b coefficient of diversity_recom suggests that this predictor variable is having a large
impact on the user’s ratings in our recommendations. In other words, the level of diversity of the recommendations has a
huge effect on the user’s ratings in the programs included in them. According to the remaining b coefficients, the level of
interest of the users in the genres of the recommended programs (rating_genres) and the fact of knowing information
beforehand about these contents (info_program) affect their ratings (rating_program) to a much lesser extent.
� As explained in Appendix B, the null hypothesis in ANOVA for multiple linear regression states that all of the coefficients

weighing the predictor variables are 0. According to Table 6, the value for the F test statistic is less than 0.001, providing
strong evidence against the null hypothesis and confirming that the predictor variables are linearly related to the criterion
variable.

After fitting the regression line, we harnessed the graphical features provided by SPSS to corroborate the hypotheses of
normality, homocedasticity and independence by analyzing the residuals of the model (these are necessary conditions as
explained in Section A.1). First, we used a Q–Q plot [21] to compare the standardized residuals with a standard normal pop-
ulation, where we noticed the linearity of the points round the principal diagonal. This suggests that the residuals do not
11 The correlation values of diversity_recom, perception_recom, info_program and TV_hours with rating_program were 0.821, 0.692, 0.448 and 0.339, respectively.



Table 5
Coefficients computed for our multiple linear regression model.

Model Unstandardized coefficients Standardized coefficients

B Std. error b

Constant 1.936 0.249
Diversity_recom 5.882 1.157 0.81
Info_program 0.21 0.146 0.14
Rating_genres 0.108 0.151 0.05

Table 6
ANOVA table over regression: criterion variable is rating_program and predictor variables are diversity_recom, info_program and rating_genres.

Model Degrees of freedom Sum of squares Mean squares F Sig.

Regression 3 2325.117 775.04 337.58 <0.001
Error 146 335.2 2.296
Total 149 2660.317
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seem to deviate from a random sample from a normal distribution in any systematic manner. Second, we corroborated the
independence hypothesis via a graph including observations versus residuals, where we found that the cloud of points was
focused on a strip parallel to x-axis and 0-centered.

Lastly, to corroborate the relevance of diversity_recom in the users’ ratings in our recommendations, we computed a new
multiple linear regression model by omitting the diversity of recommendations as predictor variable, as shown in Tables 7
and 8. According to both tables, the mean square error term is smaller with diversity_recom included, indicating less deviation
between the observed and fitted values. In ANOVA table, the value for the F-test is less than 0.001, providing strong evidence
against the null hypothesis. Regarding the squared multiple correlation coefficient R2, it has decreased up to 0.354, which
means that the model without diversity_recom is just able to account for the 35.4% of the variance in rating_program. This is
a significant worsening over the multiple regression model computed with diversity_recom as a predictor variable, which ac-
counted for 87.4% of the variance of the criterion variable.

6.3.4. Discussion from statistical results
To sum up, we present some thoughts drawn from the statistical results:

� First, from b coefficients in Table 5, it follows that when the user rates a recommended program, his/her interest in the
genres of this program has much lower influence than the diversity of the recommendations. In other words, to suggest
programs belonging to the genres defined in the user’s profile does not guarantee a successful recommendation (maybe
because the user can get bored of programs too similar to his/her preferences). This confirms the need to endow content-
based recommendations with diversity.
� Second, the low value of the b coefficient for info_program reveals that the fact that the user knows information about the

recommended program does not assure that it will be appealing to him/her. In our tests, users relied on the synopses of
the recommended programs where we explained the semantic associations existing between their interests and our rea-
soning-driven recommendations, so that they could even rate unknown contents.
� In conclusion, the diversity of the recommendations is a predominant factor in the high ratings given by the users to

the suggested programs, as inferred from our observations, where the users’ lowest ratings were associated with non-
diverse recommendations. The lack of diversity noticed by the users in their relevance feedback was referred to
Table 7
Model summary with info_program and rating_genres as predictor variables (diversity_recom is omitted).

Model R R2 Adjusted R2

1 0.595 0.354 0.3452

Table 8
ANOVA table over regression: criterion variable is rating_program and predictor variables are info_program and rating_genres.

Model Degrees of freedom Sum of squares Mean squares F Sig.

Regression 2 452.02 226.01 40.27 <0.001
Error 147 825 5.612
Total 149 1277.02
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recommendations made during the first days of the testing period, when our strategy knew little information about
their personal preferences. In our approach, the diversity is narrowly bound to the inference of semantic associations
and their processing by SA techniques, which justifies our reasoning-driven content-based strategy.

6.4. Some thoughts about scalability and computational feasibility

To finish the description of our experimental evaluation, here we describe some features aimed at ensuring scalability and
computational viability, two critical parameters for the deployment of a recommender system implementing our recommen-
dation strategy.

� As explained in Section 4.4, the Hopfield Net algorithm predicts the level of interest of the user in each TV content
included in his/her SA network, in such a way that if this level is significant enough the program is finally recommended
to the user. Due to the iterative nature of the Hopfield Net algorithm, our system can return suboptimal solutions to ensure
fast responses to the users practically in real-time.
� In running the Hopfield Net algorithm, we do not compute the values of the sigmoid function (see Eq. (1)), but rather look

them up in a pre-computed table with a precision of 10 decimal numbers for the argument. In the meantime before we
can quantify the computational cost with the users of R-AVATAR, we have carried out some in-lab tests considering the
number of users and TV contents this system will handle. As per our results, the final values of Hopfield Net (i.e. optimal
solutions) for 80,000 users and 1000 TV contents per day could be computed in about 22 h, using a dual-core server with
3 GHz processors and 8 GB RAM memory.
� Our implementation works with a master server that shares out the computational burden among several slaves person-

alization servers. Specifically, the Digital TV receiver of each viewer requests the master server to assign a computationally
available slave server, which returns recommendations by running our content-based strategy and accessing the database
that lodges the TV ontology and the user profiles.
� The third feature consists of identifying tasks involved in our content-based strategy that can be carried out simulta-

neously, to distribute them among several servers. On the one hand, the ontology server updates the contents formalized
in the ontology (starting from the TV schedule of the cable operator), and computes off-line many parameters that can be
reused as new users log into the recommender system (e.g. distances between nodes in the property sequences, and com-
mon ancestors between each pair of nodes in the domain ontology). In the meanwhile, the profiles server takes charge of
updating the users’ profiles by adding new preferences and ratings. Lastly, the slave personalization server (assigned to
each viewer by the master server) executes the pre-filtering and recommendation phases of our strategy by considering
the user’s preferences and information required for reasoning purposes (sent by profiles server and ontology server,
respectively).
� Finally, we can maintain multiple instances of the profiles server and the ontology server. In order to avoid bottlenecks

when accessing the TV ontology and users’ profiles, each instance of these servers works with a replica of the system data-
base. This is possible in our content-based approach because the users are independent, that is, the preferences of one
user do not influence the recommendations made to others. Obviously, a collaborative approach would not be able to har-
ness this optimization.

7. Conclusions and further work

In this paper, we have fought the overspecialized nature of traditional content-based recommender systems, which only
suggest items very similar to those the user already knows (mainly due to the adoption of syntactic matching techniques).
The novelty is that our content-based approach overcomes this limitation without considering the preferences of other indi-
viduals, which was the only solution proposed so far in literature at expenses of introducing other severe drawbacks.

Instead of resorting to a collaborative approach, our strategy diversifies the recommendations by exploiting semantic rea-
soning techniques about the user’s preferences, which brings important closely-related benefits. On the one hand, our con-
tent-based approach is less demanding in computational terms than collaborative solutions, which require matching
techniques to compare the profiles of many users before offering recommendations to an individual. Besides, the non-
reliance of other users’ profiles frees our strategy from privacy concerns related to the confidentiality of their personal
preferences, and it permit also to offer recommendations to a user at any time. In contrast to this, collaborative recommenders
are strongly limited for the matching techniques adopted to form each user’s neighborhood: if like-minded users cannot be
found, then collaborative recommendations cannot be offered to a given user. In this regard, note also that our approach does
not imply latencies in the presentation of the recommendations. This is not true for a collaborative system where the
preferences of many users must be known before elaborating recommendations for a given user.

Our recommendation strategy harnesses the benefits of semantic reasoning over an underlying ontology as a means to
discover additional knowledge about the user preferences, enabling to compare them to the available items in a more effec-
tive way. This way, instead of suggesting items very similar to those the user liked in the past, our strategy recommends
items semantically related to his/her preferences. For that purpose, we have extended existing semantic reasoning mecha-
nisms, so that they can be adopted in a personalization scenario where the focus is put on the user’s preferences. Specifically,
we have described how semantic associations and SA techniques fit together in our content-based recommendation
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strategy: the associations help to diversify the recommendations because they discover hidden (semantic) relationships be-
tween the user’s preferences and the available items, while our improved SA techniques enable to (i) process efficiently the
knowledge inferred by those associations, and (ii) evolve the recommendations as the user’ preferences change over time.

Our contribution is flexible enough to be reused in multiple contexts, becoming an easy-to-adopt starting point to imple-
ment diverse personalization services. Specifically, the strategy has been incorporated into a TV recommender system
named R-AVATAR that will be deployed over the cable networks of a Spanish operator. The goal of this system is to identify
potentially appealing programs to each subscriber among the contents available in the digital stream. Since the deployment
is expected for the second half of 2011, we have carried out some in-lab tests aimed at assessing the personalization quality
achieved and the perception of 150 users about our reasoning-driven recommendations. Even though these results are pre-
liminary, we think that they are a good indication of (i) the capability of our approach to adapt the recommendations as the
reasoning techniques learn new knowledge about the users’ preferences, and (ii) the users’ satisfaction regarding the accu-
racy and diversity of our content-based suggestions. In a second phase of our evaluation, we conducted statistical tests
(based on multiple linear regression, factor analysis and ANOVA tests), which revealed that the diversity of our reason-
ing-driven content-based recommendations very positively affects on the users’ ratings.

As future work, we plan to carry out a quantitative evaluation involving the 80,000 potential users of R-AVATAR. Besides
assessing our reasoning-driven personalization capabilities, we will exploit the data gathered in order to compare our ap-
proach against existing collaborative and hybrid works in terms of performance and personalization quality.
Appendix A. Multiple Linear Regression

Multiple regression is a statistical technique that allows to identify a set of predictor variables which together provide a
useful estimation of a user’s likely score on a criterion variable. This technique attempts to model the relationship between
two or more predictor variables and the criterion variable by fitting a linear equation to observed data.

Every value of the predictor variable x is associated with a value of the criterion variable y. The population regression line
for p predictor variables x1, . . . ,xp is defined to be ly = b0 + b1 � x1 + � � � + bp � xp. This line describes how the mean response ly

changes with the predictor variables. The observed values for y vary about their means ly and are assumed to have the same
standard deviation r. The fitted values b0, . . . ,bp estimate the parameters b0, . . . ,bp of the population regression line.

Since the observed values for y vary about their means ly, the multiple regression model includes a term for this varia-
tion. This way, the model can be expressed as DATA = FIT + RESIDUAL, where:

� FIT refers to the expression b0 + b1 � x1 + � � � + bp � xp, and
� RESIDUAL represents the deviations of the observed values y from their means ly, which is typically denoted as �.

Formally, given n observations, the model for multiple linear regression is expressed as follows:
Yi ¼ b0 þ b1 � xi1 þ � � � þ bp � xip þ �i for i ¼ 1;2; . . . ;n
The values fit by the equation b0 + b1 � x1 + � � � + bp � xp are denoted as ŷi, while the residuals ei are equal to yi � ŷi and repre-
sent the difference between the observed and fitted values.

In the following sections, we describe the requirements to use multiple linear regression and the terminology adopted in
this statistical technique.
A.1. Requirements

(1) Linearity. Multiple regression can be used when exploring linear relationships between the predictor and criterion
variables.

(2) Independence. The residuals must not follow a systematic pattern with regard to the sequence of observed data.
(3) Homocedasticity. The errors � of the regression model must have constant variance.
(4) Normality. The errors of the regression model must be normally distributed.
(5) The criterion variable should be measured on a continuous scale. A nominal predictor variable is valid but only if it is

dichotomous, that is, if there are no more than two possible values. Dummy variables can be used to describe variables
that take more than two values.

(6) Multiple regression requires a large number of observations, which must substantially exceed the number of predictor
variables used in the multiple regression model (40:1 is a typically accepted ratio [2]).

(7) When choosing a predictor variable, it is necessary to select one that might be correlated with the criterion variable,
but that is not strongly correlated with the other predictor variables. The term multicollinearity (or simply collinearity)
is used to describe the situation when a high correlation is detected between two or more predictor variables. Such
high correlations cause problems when trying to draw inferences about the relative contribution of each predictor var-
iable to the success of the model.
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A.2. Terminology

Here we present certain terms that must be explained to understand the results of a linear regression model.

� Multiple correlation coefficient (R). This value measures the correlation between the observed value and the predicted
value of the criterion variable.
� Squared multiple correlation coefficient (R2). It indicates the proportion of the variance in the criterion variable which is

accounted for by the regression model. In essence, it is a measure of how good a prediction of the criterion variable
can be made by knowing the values of the predictor variables. However, R2 tends to over-estimate the success of the
model when applied to the real world, so an adjusted R2 value is calculated.
� Adjusted squared multiple correlation coefficient (adjusted R2). This value takes into account the number of variables in the

model and the number of observations considered in it. For that reason, adjusted R2 is the most useful indicator of the
success of the resulting regression model.
� Standardized regression coefficients (b coefficients). The b values are measures of how strongly each predictor variable

influences the criterion variable. Thus, the greater the b coefficient the greater the impact of the predictor variable on
the criterion variable. These coefficients are computed by statistical packages, which typically provides tests to assess
the significance of the model. A basis for these tests of significance is analysis of variance (ANOVA).

Appendix B. ANOVA over regression

ANOVA provides information about levels of variability within a regression model. Since the regression line is expressed
as DATA = FIT + RESIDUAL, it can be rewritten as follows:
Table B
ANOVA

Sour

Mod

Erro

Tota
ðyi � �yÞ ¼ ðŷi � �yÞ þ ðyi � ŷiÞ
The first term is the total variation in the criterion variable y, the second term is the variation in mean criterion variable, and
the third term is the residual value. Squaring each of these terms and adding over all of the n observations gives the
equation:
X

ðyi � �yÞ2 ¼
X
ðŷi � �yÞ2 þ

X
ðyi � ŷiÞ2
This equation can be rewritten as SST = SSM + SSE, where SS denotes Sum of Squares and T, M and E are notation for Total,
Model and Error, respectively. The square of the sample correlation is equal to the ratio of the model sum of squares
(SSM) to the total sum of squares (SST). This formalizes the interpretation of R2 as explaining the fraction of variability in
the data accounted for by the regression model.

All the computations involved in an analysis of variance model are shown in Table B.1, where p is the number of predictor
variables; n is the number of observations; DFM, DFE and DFT are the degrees of freedom for model, error and total, respec-
tively; MSM and MSE are the sum of squares for model and error, respectively; and the F column provides a statistic for test-
ing the null hypothesis b1 = b2 = � � � = bp = 0. The alternative hypothesis simply states that at least one of the coefficients
bj – 0 with j = {1, . . . ,p}. Large values of the test statistic provide evidence against the null hypothesis, confirming that crite-
rion and predictor variables are linearly related.

Appendix C. Factor analysis

Factor analysis is a very popular statistical technique whose purpose is to reduce multiple variables to a lesser number of
underlying factors that are being measured by those variables. Mathematically, a factor is a linear combination of variables
and factor analysis groups variables according to their correlation.

The steps to carry out factor analysis are the following ones:

(1) Computation of the correlation matrix and evaluation of its factorability. The goal is to determine how much common
variance exists among the variables and to decide whether the correlation matrix is appropriate for factor analysis.
One of the most commonly adopted methods is Kaiser–Meyer–Olkin measure of sampling adequacy (KMO). As
detailed in [28], this method computes a value that indicates the degree of common variance among the variables that
.1
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Table C.1
Kaiser–Meyer–Olkin measure of sampling adequacy (KMO).

KMO value Degree of common variance

0.9 to 1 Marvelous
0.8 to 0.89 Meritorious
0.7 to 0.79 Middling
0.6 to 0.69 Mediocre
0.5 to 0.59 Miserable
0 to 0.49 Do not factor
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can be explained by the factors extracted by factor analysis. As shown in Table C.1, the greater the KMO value, the
more suitable the correlation matrix for factor analysis.

(2) Extraction of an initial set of factors. One of the most used techniques to extract factors from the correlation matrix is
the principal components method. Other techniques are maximum likelihood method, principal axis method,
unweighted least-squares method, generalized least squares method, alpha method and image factoring, whose internals
are described in [28]. These methods allow to compute the so-called factor loading matrix, whose components (or fac-
tor loadings) measure the correlations between the factors (columns) and their underlying variables (rows). The
square of the factor loadings represents the variation in the variable explained by the factor. The sum of the squares
of the factor loadings in each column is an eigenvalue, which represents the amount of variance in the original vari-
ables that is associated with that factor. Analogously, the communality is the proportion of variability in each variable
accounted for by the extracted factors.

(3) Selection of the appropriate number of factors to be extracted in the final solution. A rule for deciding on the number of
factors is that each included factor must explain at least as much variance as does an average variable. In other words,
only factors for which the eigenvalue is greater than 1 are used, which is known as Kaiser’s criterion. Other criteria for
determining the number of factors are the Scree plot criteria and the percentage of variance criteria (see [34] for
details).

(4) Rotation of the factors to clarify the factor patterns in order to better interpret the nature of the factors, if necessary.
Sometimes one or more variables may load high on more than one factor, making the interpretation of the factors
ambiguous. To facilitate interpretation, it is possible to rotate the axis, which is equivalent to forming linear combi-
nations of the factors. A commonly used rotation strategy is the varimax rotation, which attempts to force the column
entries to be either close to 0 or 1 (see [34]).

(5) Computation of the scores of each observation on each factor, once they have been identified and named. This step is use-
ful to carry out multiple regression models where the factors are used as predictor variables. Recall that the factors are
non-collinear, so that the resulting regression model does not suffer from multicollinearity problems (recall the
requirement (7) in Section A.1).
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